Active Set and EM Algorithms for Log–Concave Densities Based on Complete and Censored Data
نویسنده
چکیده
We develop an active set algorithm for the maximum likelihood estimation of a log–concave density based on complete data. Building on this fast algorithm, we introduce an EM algorithm to treat arbitrarily censored data, e.g. right–censored or interval–censored data.
منابع مشابه
Bayesian Analysis of Censored Spatial Data Based on a Non-Gaussian Model
Abstract: In this paper, we suggest using a skew Gaussian-log Gaussian model for the analysis of spatial censored data from a Bayesian point of view. This approach furnishes an extension of the skew log Gaussian model to accommodate to both skewness and heavy tails and also censored data. All of the characteristics mentioned are three pervasive features of spatial data. We utilize data augme...
متن کاملThe Basic Idea of EM
4 The Expectation-Maximization algorithm 7 4.1 Jointly-non-concave incomplete log-likelihood . . . . . . . . . . . 7 4.2 (Possibly) Concave complete data log-likelihood . . . . . . . . . . 8 4.3 The general EM derivation . . . . . . . . . . . . . . . . . . . . . 9 4.4 The E& M-steps . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.5 The EM algorithm . . . . . . . . . . . . . . . . . . ....
متن کاملThe basic idea of Expectation-Maximization
3 The Expectation-Maximization algorithm 7 3.1 Jointly-non-concave incomplete log-likelihood . . . . . . . . . . . 7 3.2 (Possibly) Concave complete data log-likelihood . . . . . . . . . . 8 3.3 The general EM derivation . . . . . . . . . . . . . . . . . . . . . 10 3.4 The E& M-steps . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.5 The EM algorithm . . . . . . . . . . . . . . . . . . ...
متن کاملThe basic idea behind Expectation-Maximization
3 The Expectation-Maximization algorithm 7 3.1 Jointly-non-concave incomplete log-likelihood . . . . . . . . . . . 7 3.2 (Possibly) Concave complete data log-likelihood . . . . . . . . . . 8 3.3 The general EM derivation . . . . . . . . . . . . . . . . . . . . . 10 3.4 The E& M-steps . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.5 The EM algorithm . . . . . . . . . . . . . . . . . . ...
متن کاملEstimation of Parameters for an Extended Generalized Half Logistic Distribution Based on Complete and Censored Data
This paper considers an Extended Generalized Half Logistic distribution. We derive some properties of this distribution and then we discuss estimation of the distribution parameters by the methods of moments, maximum likelihood and the new method of minimum spacing distance estimator based on complete data. Also, maximum likelihood equations for estimating the parameters based on Type-I and Typ...
متن کامل